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I. Introduction

Calculations of the energy bands of solids can be classi-
fled into two broad groups: first-principle calculations which
directly solve a gilven one-electron crystal wave equation, or
interpolative calculations which describe the bands 1ﬁ terms.
of a minimal basis set and corresponding disposable parameters.

In the first group we include Orthogonalized Plane Wave (OPw)l’2

3

and Augmented Plane Wave (APW)” methods as well as the Green's

function method)'f’5 In‘the second group are fhe atomic orbital
scheme of Slater and Koster6 and the semi-empirical approaches
based on pseudopotentials?’8

One of the first approaches to the band structure of solids
was the LCAO or tight-binding method. The condition for its
.validlty i1s that the one-electron wave functions be highly local-
1zed around each atomic core, with small overlap onto adjacent
atoms. This condition is usually well met by the valence states
of the rare gas solids and ionic crystals. In particular, it has’
been used to calceculate the valence band structure of KCl9 which
roughly corresponds to 3p atomic wave functions localized on the
Cl™ ions.

The valence bands of the alkall halides furnish a simple
example of the utility of an abstract approach. Howland considers
separately the cases where the bands are derived from orbitals of
3p(C17) alone (a 3 x 3 secular equation), and where the basis set
contains 3s(C1”), 3p(KT) and 3s(k") orbitals also (an 8 x 8 secu-

lar equation). Energles from these two band structureslo are




listed in Table I. The forms of the bands are seen to be simi-
lar to within 10°/, but the widths differ by a factor of 1.9.
Hence, a good descriptiocn of the halide valence bands can be
given in terms of only two "effective" overlap integrals (ppo-)
and (ppr). The "effective" overlap integrals turn out to have
the same sign and ratio as those calculated from 3p halide atomic
orbitals, but are only about half as large. The "effective"
basls functlons are similar to Wannier functions, which are more
localized and hence exhiblt smaller overlap.

In view of the successful reduction of the actual bands
derived using elght basls functions to an abstract model using
only three baslis functions and two shape parameters, one may
now carry the process of abstraction one step further and deter-
mine the shape parameters directly from experiment. This has
been done for CsBr from optical data; the measured parameters
seem to be only 2/3 of those calculated from eight basls func-
tions.fl1 This indicates that a further reduction in calculated
band width would be obtained from a complete set of (exact)
Wannler basis functlons. From this example we conclude that an
abstract scheme may actually yield better agreement with experi-
ment than do flrst principles calculations. It also establishes
a procedure for obtalning matrix elements between abstract basis
functions (in this case Wannier functions), although the expli-
clt determination of these functions 1is not required and may be

- inconvenient 1in practice.



The formal treatment given in Sectlion II closely parallels
the OPW method. However, calculation of the 3d states requires
a combined tight-binding and plane wave approack?-lguch an ap-
proach 1is cumbersome if carried out rigorously. In Section III
we show that exlsting APW calculations Justify repfesentation
of the d bands alone by the Slater-Koster method. In Section IV,
the s-p conduction band states are discugsed including the ef-
fects of orthogonality to the d bands. In Section V we treat
s-d hybridization, and derive a parametric representation for
the s-~d potential terms.

At first sight, it might appear that treatment of the s-d4
interactions could be facilitated by use of group theory. Along
certain lines of the Brillouin zone, symmetrical combinations of
plane wave conduction band states can be formed which will be
orthogonal to most of the d band states. The symmetry employed
is that of the group of each symmetry line. This approach does
indeed simplify the treatment of s-d hybridization effects along
the (100), (110) and (111) axes. We have found, however, that
for general k values, this approach alone makes 1t very diffi-
cult to parameterize s-d interactlons.

For this reason we have found 1t necessary to introduce a
" much stronger ansatz which 1is not consistent with group theory.
However, the ansatz is valid to a good approximation, and therein
lies 1ts suitability for reducing the complexity of the parameter-
‘ized representation. We assume that prior to hybridization with

the lower plane waves the radial d wave functions in a given



atomic cell are the same for all | k | and are independent of
band index n. Thus the d states are regarded as part of the

spherically symmetric atomlc core. We Justlfy our 1sotropilc

model for d states by direct comparison with APW band calcu-~-

latlons. .

The interpolation scheme developed here determines,En(g)
throughout the Brillouln zone. Near poigts of high symmetry
5« one can also expand En(_lg) in powers of k - k . This ap-
proach, usually called k:p perturbation theory, furnishes re-
lations between our parameterized interactions and sheds light
on thelr analytic character. It 1s discussed elsewhere}6

II. General Theory.

To be speclific, we conslder in this paper only monatomic

fce metals such as Ni and Cu, although our results could easily

be extended to monatomic bece transition metals as well. The
basis states are chosen as follows. To describe the 4 bands,
five states are required. These are taken to be proportional

2 . y2, and 3z2 - r2, which form a convenient

to xy,'xz, yZ, X
representation for the angular dependence of tight-binding d
states in a cublc lattice. The lowest conduction bands in the

positive 1/48th primitive section of the Brillouin zone (see

Fig. 1) can be described using the four OPW's which are degener-

ate at the point W in the empty lattice. These are labelled




by their principal plane wave components (k +-51)’ where the

reciprocal lattice vectors K, are
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in units of 2m/a, and where barring means the negative.
Uslng these basls states, our 9 x 9 Hamiltonian will have

the block form:

_______ (2.2)

In (2.2) 4 and ¢ stand for d band and conduction band states,
respectively. At a general point, k, of the»Brillouin zone all
thé:matrix elements in (2.2) are non-zero.

We assume throughout that our basis functions are orthogonal,
so that our secular equation has the form

det | Hyy - E Y 13 | = o (2.3)

The assumption of orthogonality 1s essential 1f the abstract
representatlon 1s to achieve the simplicity desired. We méntion
here briefly reasons for hoping that a simple parametric representa-
tion of the matrix elements of (2.3) is feasible.

For the d bands we have the work of Fletcher and Wohlfarth17

who neglected non-orthogonallty terms between d orbitals on dif-



ferent atoms. We will show that the form of the d bands alone, AS
given by APW calculations, 1s very close to that obtained by
Fletcher and Wohlfarth,

For the conduction bands we find it necessary,_in the spirit
of the OPW and pseudopotential methods, to introduce energy-
dependent orthogonality terms. These oceur in the c¢-¢ block, and
their analytic form 1s determined by our ansatz of d isotropy. Be-
cause the wldth of the 4 band is comparable to the difference in
energy between the conduction bands and the d bands, these terms are
no longer accurately proportional to (E - Ed), as in the OPW method.
Also less appropriate, near d-c¢ crossover points, is the pseudo-
potential approximation E —*-Ec, where Eo is a free-electron energy.

Our procedure for establishing each term in the secular
equation is to make the general ansatz of d isotropy and then to
determine the radlal behavior of each term as a function of k by
direct comparison with energy bands obtained by APW calculations.
involving much larger secular equations. The full significance
of this‘procedure will be treated in our summary. We find that
the approximations to the orthogonality terms mentioned in the
preceding paragraph often produce only small errors, and that for
many purposes a slimpler representation 1s adequate. Nevertheless,
the full matrix form represents the most consistent and logically
correct development of the isotropy ansatz, and hence forms

the basis of our exposition. Our ultimate criterion for

7,8



the successful reduction of the large secular equation--as well
as our justification for the parameterization of the various
terms in the Hamiltonian--will be the same one used in developing
pseudopotentials, viz., success in obtaining En(g)‘itself for the
bands n of interest.

IIT. Tight Binding Representation of 4 Bands.

The tight-bindlng approximation may be formulated in several
different ways. One may retain or neglect non-orthogonality terms
between nearest neighbor basls functions. When the non-orthogonal-
ity terms are eliminated by unitary transformation of the tight-
binding basls functlions, the new basis functions are called Wannler
or L8wdin functions. Although this transformation does not alter
the atomic symmetry of the basis functions and considerably simpli-
fies the secular equation, 1t 1s difficult to carry out accurately.
Another variation consists of neglecting three-centered integrals
and non-orthogonality terms., This simplification, called the two-
center approximation, leads to substantlal reductions in the num-
ber of overlap parameters.

Neglecting the s-p conduction bands, Fletcher and Wohlfarth17
have calculated the band structure of N1 using the two-center ap-
proximation. They obtain a 5 x 5 secular equation 1in terms of
certaln nearest nelghbor overlap integrals. These they calculate
using wéve functions and a potential :derived by Hartree and Hartree18

for Cu+. Although FW calculate six parameters, these are exactly



equivalent to linear combinatlions of three two-center parameters.
The relations satisfled by the six FW parameters in the two-center

approximation6 are:

A = - f (ado +dd§ )
A, = 1 (dar + ad§ )
Ay = 1 (dar - aa$ )
Ay = | ddr (3.1)

A= - # (£ ddo + aar + £ ad s )

- g(ddo- -ddd )

o
(0)Y
il

Using our combined interpolation scheme, we have fitted the
d bands and conduction bands of Cu as calculated by the APW method}g
Initially, we treated the general parameters such as A in (3.1)
as 1lndependent. Our hest values for the first nelghbor parameters
can be used to determine the three’ two-center, nearest neighbor

overlap integrals. The result, in terms of our parametersi_.Pi (see

appendix B), 1s
1 . - r‘ﬁ . L -
ddo- = (P3 -\'-_B—a_ P6): (P7 3 P6): 2 (3P3 P7) (3-2)

ddr

(Py + P5); Pg | (3.3)

ad§

(P5 + {3'Pg)s 5(38; - P3); (B, - Bo); (\,-—;—.— Pg + Po)
| (3.%)



We compare the fitted left-hand sides of (3.2) - (3.4) with the
values for the right-hand sides derived from (3.1) in Table II. It
appears that the two-center approximation is valid to about 6%>;
The corresponding differences in d band energy levels are at most
0.004 Ry., with one exception.

The exceptionally large thrée-center‘contribution i1s repre-
sented by the zero of energy of r;5' relative to f12, which 1s
described in the notation of ref. 6 by E

11
(Note that this is not equivalent to [7, - r55’°) We have there-

000) - E55(OOO) = 0.008 Ry.

fore included thils correction explicitly in the Hamiltonian, but
have otherwlse made the two-center approximation.

The detailed evaiuation of the E or P parameters 1s given in
Appendix A. Briefly, the method consists of obtalning a set of
linear equations in the parameters through the natural factoriza-
tion of the secular equation at Brillouin zone symmetry polnts and
along symmetry lines. The matrix elements of the d part of the
Hamiltonian can now be obtained from Slater énd Koster'tg Table III
(reproduced in Appendix A), providing that the zero of energy para-
meters are go for the triplet degeneracy at r1and gO + v for the
doublet degeneracy where Y = 0.008 Ry. in Cu.

We conclude by discussing the four second neighbor E para-
meters. These were lncluded in the determination of parameters
discussed in Appendix A, but they were found to be so small (<0.001 Ry.)
as to have a negligible effect on the band structure. For thils
reason, we have not included them in our final scheme. Altogether,

this leaves the 5 x 5 d-d block parameterized in terms Of'gO’ Y,
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ddo-, ddr and 4db .

IV. Representation of Conduction Bands.

At first glance, the calculated conduction bands of transi;
tion and noble metals appear to be nearly free electron in charac-
ter. However, on closer examlnation, one sees that there are marked
deviations in the lowest conduction band, depending on whether one
1s above or below the d bands. Moreover, the Bragg splittings at
the symmetry points X and L are much larger than those found in
"simple" metals such as Al.

To illustrate these devlations, we have plotted in Fig. 2

20 for the first and second conductlion bands in Al

and the corresponding bands in Cu?1

Segall's reéﬁlts
It 1s clear that the d bands
are responsible for several differences 1n behavior which we analyze
in two 1imits. In the first, the conduction band 1s close to a d
band of the same symmetry. Here hybridization has taken place--~
the d band and conduction band are split equally above and below
the point of crossoﬁer in the absence of interaction. We call
this splitting the direct c-d effect.

In the second limit, the conduction band is well above the
d bands. There the conduction band 1s shifted above the free elec-
tron band by a roughly constant amount. Note, however, that the
shifts are different for the various symmetry directions (100),
(110), and (111), being in the ratio (1:2:1) respectively. (Note
that thils 1s also the ratio of the number of d bands whose group
representation i1s the same as the lowest conduction band for these

three symmetry directions.) Thus, if we wish to incorporate these
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deviations into the secular equation, we must have terms that are
both angularly as well as radlally dependent,

The hybridizing and repulsive effects are 1lndicated for the
energy bands®? of Cu along the (110), (100) and (111) symmetry a:xes
in Fig. 3 (a)-(c¢c), respectively. Our task now 1s ﬁo construct an
analytic representation of these effectsx Procedures for obtaining
the hybridizing terms will be discussed in the following section.

To determine the repulsive terms, we assume that in terms of

pseudoplane wave states L5;> the conduction band state |Q£> has

the form

10> = [I - By (k) |an> ]C_x{l (4.1)

where the normalizing factor Ck is given by
e, [2 =1-3 () - (4.2)
_lf_/ - -Zmn _? *

Qur assumption of d isotropy can be used to determine the ortho-
gonality coefficients Mdn(E) as follows. Let a d basis function

be written as
|and> = by (2) = C,F° (x/r, v/7, 2/7) &(r) (4.3)

where Cn is the normalizing factor for the cublc harmonic Fnd.

Then

Man (k) = <¢dnl E>

c, F,% (k/x, ky/k, ky/k) £(k) (4.4)

Because of d isotropy f is a function only of k, and not of k. The

explicity parameterization of f(k) is given below.
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Matrix elements in the 4 x 4 conduction block are given by

x’gE {Hl f5:> - gél cg} [I + II + III + IV] (4.5)

where in units with h°/2m = 1,

I< (K +7,) 6 (1 - (4.6)

ket YEﬂE' GEE')'
The terms Vk-k' represent the sum of the matrix elements of the
crystal pofzﬁzial V and the repulsive potential VRc between
reciprocal lattice plane waves7’8. We let K, denote all the (111)
and (200) reciprocal lattice vectors. For K, larger than Ki’ we
can apply the general cancellation arguments™ and set V(KJ) = 0,
This leaves us with two conduction band pseudopotential parameters
V111 and Vagoe

One finds that V111 and Véoo alone produce band gaps comparable
to those of the "simple" metals. In Flg. 2, we have labelled this
part of the splitting of L1 and L., by 2V111.

The d-d orthogonality terms in (4.5) are

IV = T4 Cy Cp Fifg) Fg,(g')f(k) f(k')Hdn,dn' (4.7)

where H 1s the appropriate matrlx element between the tight-

dn,dn'
binding 4 states contalned In the d-d block. The cross terms can
be shown to have the form

ITI + IITI = V - 2(IV) (4.8)

V= -f £iFy(k) By (k') Loy 8(k) £(k') + Oy e(k')f(k)] (4.9)

-
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where g(k) is the hybridizing form factor discussed in section 5.
For our matrix element we finally have

< b 18] §,> = ¢t oot [T+ V- 1v] \ (4.10)

We must also conslder the terms .
E<d | &> =8 S, - (- 8, ,)oT] (4.11)

where OT represents positive orthogonality terms. The normalization
factors in (4.11) make the dlagonal coefficient of E unity. The
off-diagonal OT are inconvenlent, and if retailned would complicate
the machine solutlion of the secular equation considerably.

In the pseudopotential approximation to the OPW method the
terms E(OT) are grouped with the terms -Ed(OT), which are represen-
ted by IV in (4.10). One then makes the replacement E "%f;'(an
average plane wave energy) and assumes that the d bands are narrow
(Ed —,'Eg). The resulting OT are proportioned to'ﬁz -'Eg and are
manifestly invariant to a change in the zero of energy.

In our case, we have found 1t simpler to proceed as follows.

- ).

The conduction band width § E, 1s large; in fact éEC > (Ec
However, one can conslder the OT in two limlts: near s-d cross-
overs and near the (200) and (111) Bragg scattering planes. In
the former case direct calculation shows that very good results
are obtained by neglecting the OT altogether compared to the hy-
bridization terms. Thls is not surprising, for the hybridization
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terms are large in magnitude and have a larger effect because of
the quasi-degeneracy of the d bands and conduction bands.

On the other hand, near the Bragg scattering planes the non-
dlagonal OT can be made small by a proper choice of the zero of
energy. We have found that setting E (X) = X% 4+ M, = O gives
good results for conductlon band states at L, X and W.

[ By neglecting E (k) +-\g at L and W, we 1n effect, absorb
small OT 1nto our pseudopotential parameters. Agaln direct cal-
culation shows that the error incurred is small.]

From d lsotropy, one can see that as k- 0, f(k) 1s of order

¥°. Thus a convenlent form for f(k) is

£(k) = A J, (kRo) (4.12)

where Jz(x) 1s the second spherical Bessel function that i1s ob-
talned 1n the OPW method by expanding plane waves in terms of Le-
gendre polynomials. To improve convergence f(k) is cut off beyond
1ts second node. The value of LRo is 2.9 for Cu and A = 1.3 o In
Fig. 4, we show f(k) explicitly. The procedure used to determine
A and Rp 1s described in Appendix B.

The orthogonallty terms are responsible for the large Bragg
splittings at X and L, which are asymmetric with respect to the
free electron energies at these polnt. For example, neglect the
effects of s-d hybridization (section 5) and consider the conduction
band structure assoclated with only the two lowest plane waves near
or L

X or L (XM' and X and Ll)' Here the lowest two bands have

1’ 2t
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wave vector k and -k. We extract from the secular equation these

degenerate levels glving a 2 x 2 determinant:

2
K +a-2A a + Vop
+ Vo
dev. =0 (4.13)
2
a .+V2K K +ad =
+ Vo
where A 1s the elgenvalue, K2 is the kinetic energy, V. is

2K
V111 or V200 for L and X respectively, and a 1s the term derived

from orthogonality. Solving this simple determinant ylelds:

A= (K2 + a) & (Vo + 2) + v, (4.14%)

Hence we see that for the lowe} (0odd symmetry) elgenvalue the ef-
fect of orthogonality is identically zero, whereas for the higher
(even symmetry) level 2a is added. The asymmetry of the repulsive
ferm a in the two elgenvalues shows that marriage of tight-binding
and plane wave techniques requires orthogonalization of the plane
wave states to the d states.

Another approach which reveals a relation between the tight-
binding diagonal block and the plane wave biock, and which is in-
dependent of s-d hybridization,is based on k«p perturbation theory
near X or L. One can then show that orthogonalization terms in
the latter block are required to balance overlap (finite band width)

terms in the d block}6
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V. s-d Hybridization.

In this section we conslder the matrix elements of the Hamil-
tonian in the off-diagonal blocks c¢c-d and d-c. Although the con-
duction basis states given by equation (4.1) have been orthogon-
alized to the d basls states, c¢~-d matrix elements wiil still be
non-zero in general. In fact near c-d crogs-overs, where the
orthogonality terms are small, the hybridization terms alone
separate ¢ and 4 terms belonging to the same irreducible rep-
resentatlions.

It is consistent within our i1sotropic approximation to rep-
resent the crystal potential as a superposition of spherically
symmetric atomic potentials. Just as second-neighbor d-4 over-
lap was found to be small compared to nearest nelghbor overlap,
so0 we neglect nearest nelghbor overlap in computing the hybridl-
zation term. Thus we regard the mixing as derived from inter-

actions in a spherically symmetric central cell.
Using (4.1) we have

<dnl H!I ¢£> = Cl-cl [ <dn{H'| k> —H:in,dn'Mdn'(E)J

(5.1)

Strictly speaking H' in (5.1) includes both the crystal potential
and the repulsive terms arising from orthogonalization of the
plane wave |g§> to the s and p core states. With complete 1so-
tropy the latter would vanish in determining the matrix element

(5.1) with 4 states. In any case we are not concerned here with
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the detaills of (5.1). For our purposes it is sufficlent to write

Ldyp | H 50&> = /—;d(g) 9 (k) (5.2)

where g(k) is an isotropic hybridizing form factor. -With the
absorption of the normalization factor,‘Ck{ the definition (5.2)
is consistent with (4.9). -

To be completely consistent one should represent the first
term on the right hand side of (5.1) by a form factor g'(k) and
determine g(k) from g'(k) using (5.1). In practice the effects
of hybridizing are dominated by the first term, and 1t is not
profitable to carry through this separation.

Again 1t can be shown that, as k —» O, we have g(k) = K°.

Thus for small k we set

g(k) = BJ;(kR,) (5.3)

with LR, = 2.9 and B = 13.8 eV in Cu . We show g(k), including
a linear cutoff at large k, in Fig. 5.

For a given crystal potentlal and an assumed d wave function
(e.g., taken from the free atom) we could evaluate (5.1). However,
to obtaln agreement with APW calculatlons is would then be neces-
sary to include the effects of higher plane waves on the d states.
For reasons discussed in our introduction and summary, this 1is Jjust

what we wish to avoid. The form factor g(k) introduced here in-



18

cludes these effects consistently both in equation (5.2) and
in equation (4.9). |
In Appendix B we discuss in detall the method used to deter-
mine g(k). It is similar to that described in section 3 for deter-
mining the d band parameters. There we consldered only d band states
of symmetry different from the conduction hand. Here we use d
band states along symmetry lines of symmetry types the same as
those of the crossing conduction bands. DBetween these d and
conduction bands we have both hybridization and orthogonality
terms. The effects of the.former are larger near s-d crossoversJ
[As discussed in the preceding section, we found i1t convenlent '
to neglect certaln orthogonality contributions to the matrix ele-
ments in the region, because of 1ts tight-binding character. Had
we retalined these terms, and introduced other (ess accurate) ap-
proximations instead, the orthogonality terms could have been
forced into the form (E-Ed)|MA“(k)|2, In this form one can see
expllicitly how to separate the hybridization splittings from the
orthogonality terms, by assuming that the latter vanish near s-d
crossovers and using the construction of Fig. 3.] Indeed we find
that near s-d crossovers the hybrldization terms actually dominate
so strongly as to yleld an unambiguous separation. On the other
hand, near the zone faces where Bragg scattering takes place,
the orthogonality terms dominate and the hybridization form
factor can be determined by iteration.

Another method for separating hybridization from orthogonality
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terms near the zone faces relles on the k-p perturbation theoryl6
near X and L. This method 1s extremely accurate in the immediate

vicinlty of symmetry points, but the interaction method described‘
in Appendix B ylelds more general results throughout»the Brillouiln
zone. These are also quilte accurate, and appear to approach the

limitations inherent in the ansatz of d isqtropy.

VI. Evaluation and Simple Applications

To fit the d bands of a monatomlic fcc metal using our method,
certalin parameters must be specified. For the conductlion bands
alone there are two parameters——vlll and véOO‘ The position and
shape of the 4 bands aione are fixed by filve parameters-—n(o (the
d—ban4 energy relative to the conduction bands), ddo, ddw, 4ds,
and the three-center parameter y. Finally the s~d interactions are

specified by A, B, R, and R, in equatlons (4.12) and (5.3). For

1
convenience these eleven parameters are listed in Table VI, Values
are given there which fit the energy bands of Cu as determined
by Burdick from an R-independent potential using the APW methodlg,
as well those calculated by Segall using an £-dependent potential in
the multiple scattering formulation=O~22,

By examining the table one notices several differences between
Burdick's and Segall's calculations which arise from the f-dependent
potential used by the latter. Segall's d wave functions are more

extended than are Burdick's. This is reflected in the d band overlap
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parameters, which are about 30% greater for Segall's bands than for
Burdick's. The orthogonality and hybridization strengths (A and B,
respectively) are 20% and 5% greater, respectively. (We believe that
this indicates that the two effects cannot be combined into one.)
The pseudopotential parameters V111 and Véoo are alsé changed, and
are larger for Segall's bands than for Burdick's, reflecting the fact
that the h-dependent potential leads to greater c~d differences, and
somewhat stronger c-c¢ interactions. The scale factors Ro and R1
change by 5% and 16%, respectively, which agaln suggests the inde-
pendence of the hybridizing and orthogonality terms.

The accuracy of the scheme can be tested 1in several ways. The
overall rms deviatlon between our values and those of Burdick for
the first six bands (5 d bands and lowest conductlon band) at 89
points of the Brillouln zone is 0,08 eV. The values at T', X, L and
W are compared in Table IV; for these points the rms deviation 1is
0.07 ev. Similar results are obtained 1In fitting Segall's bands.
The mnst critical test of the parameterization is cbtained By com-
paring the rms deviation of the set of ZC points used to determline rela-
tions among the parameters fitting Burdick's bands with that of the
set of 40 points not used; the two values are 0.07 and 0.08 ev,
respectively. It can be seen that within statistical uncertainties
the deviations are identical. Moreover, the uncertalnties in var-
ious APW Cu energy levels (apart from those associated with do’ the

position of the d bands relative to the conduction bands) are still
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larger than these rms deviatlons, so that a more accurate fit might
not be significant. Finally the levels at X, L, K and W in the
second conduction band are reproduced with an accuracy comparable
to that of the filrst principles calculations.

As a simple application of ouvr scheme we have calculated the
density of states g(E) in the d band region both with and without
mixing of the d bands and conductirn bands., In the calculations
preser.ted below we have constructed histogram denslitles of states
based on the lowest 6 elgenvalues of cur 9%h order secular equa-
tions at 4500 randomly selected peints in 1/48th of the Brillouin

ocevpation,

zone. With an energy 1interval of 0,0025 ryd thilis gilves an average A
ni)of 00 and an rms fluctuvaticn in Ty
desires {as we did in the comparisons telow) the same random

cf about 5%. If one so

selecticn can be used in each set of samples.

We have considered three band structures related to Burdick's
cu bands. The first, given in Fig. 6, corresponds to the d bands
alone. This case (which has been caleulated bef:reg3) was used
as a check on the technique. We see that this 1s quite similar to
the results obtained previously, except that our Flg. 6 has more
structure due to the seven times larger randcm sample,

In the other two cases (shown in Figs. 7 and 8) we have added
the s-d interactions to the bare d-band structure of Fig. 6. The
band parameters for case 2 are taken from the flt to Burdick's

calculation discussed in preceding secticn. Case 3 has the same




band parameters, except that the positlion of the conduction bands
has been changed with reSpect to the 4 band complex. Here we have
increased the zero of energy 40 of the 4 bands relative to the
conduction bands, leaving the remaining parameters unchanged.

Case 2 (Fig. 7) has do = +5.8¢ eV. (copper-like), whereas Case 3
(Fig. 8) takes d = +7.20 eV (nickel-like),

By comparing Fig. 8 with Fig., 7 we see that shifting the
conduction bands relative to the d bands leaves the density of
states throughout most of the d band regilon almost unchanged.

This is what one would expect from a rigid band model, neglecting

s-d mixing altogether. Both the large peaks 1in the density of states
near 0.3 and 0.4 ryd. and weaker peaks near 0.22 and 0.35 ryd. are
little changed, indicating that they arise from states of almost pure
d character.

In Fig. 7 and Fig. 8 we have indicated energles at the symmetry
points I', X, L and W. These produce Van Hove edges 1n the density
of states. Other critical polints are important, however, and these
are not located at symmetry points. (E.g., the peak 1n the density
of states near the top of the 4 band, which is commonly supposed to
explaln the high specific heat of Ni, 1s caused on the highér side

by the L. edge, and on the lower side by an unidentified critical

3
point,)



VII. Conclusions

The alm of this paper has been to develop a combilned inter-
polation scheme which could reproduce the energy bands of transi;
tion and noble metals within 0.1 eV and which would depend on the
smallest possible number of parameters. In reaching our goal we
have shown from APW calculatlons for Cu that

(1) Only nearest neighbor interactions in the two-center
approximations (plus one three-center term) are required for the
d bands;

(2) Only two pseudopotential parameters are required to de-
scribe the lowest conduction band;

(3) That conduction band-d band interactions are of two kinds.
The first, hybridization, 1is well known, but i1ts magnitude has
been evaluated and it has been shown (apart from spherical har-
monic factors) to be isotropic. The presence of the second inter-
actlon, a repulsive one arising from the requirement of orthogonali-
zatlon of basls states, had not pre§iously been recognlzed 1in APW
calculations;

(4) Both conduction band-d band interactions are describable in
terms of form factors. Although the factors are similar, they
appear to be independent.

Some of the assumptlons upon which our calculations are based
have been discussed in several recent papers24’25. The 4 bands are

regarded as a resonant level overlapping the conduction band, and




the phase shift of the resonant level is introduced using
scattering theory. These discussions are entirely formal, wheref
as our results demonstrate explicitly that an abstract approach can
reproduce APW or multiple scattering calculations very.accurately.
Although previous formal discussions based on phase shifts have not
been able to separate hybridizing and orthogonallty terms, we have
shown that both terms must be included to achleve high accuracy.

A major unsolved problem for the resonance theories is how to in-
corporate five (rather than one) d resonance levels into the theory.
We have avolded this problem at the outset and then have gone on

to demonstrate (we believe for the first time) the validity of the
two-center approximation. A preclse sense In which the resonance
analogy 18 valid is analyzed in the following paper16.

Because of the simpliclty and generality of the interpolatlion
scheme, 1t should have wide sgpplicatlions tc many problems in the
quantum structure of materials contalnlng overlapping conduction and
d bands, Just as the simple pseudopotential method has successfully
treated s- and p-band crystals. We mentlion only two applications
which follow immedlately from the method in its present form.
Firstly one may determine parametric values to yleld very accurate
fits to observed Ferml surfaces. Secondly the hligh speed of the
method together with the natural character of the baslis states
(atomic d states or plane wave conduction states) makes calculation
of direct interband optical spectra, including proper o¢sclllator

strengths, stralghtforward. We hope to return to these applications

elsewhere,
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APPENDIX A

In Table V are listed the twelve parameters
given by the zeroth, filrst, and second neighbor general
overlap integrals. There are two difficulties in deter-
mining these parameters from a given band structure calcu-
lation. Filrst, the eigenvectors of an energy level are
not, 1in general, wholly d, but have some hybridization
with the conduction bands. Second, even 1n those levels
which are most d-like, the energy level will depend on
several of these parameters, rather than on one or two.

Both of these difficulties can be overcome by
considering energy levels at points 1in the Brillouin
zone of high symmetry. Then only one, or at most two, of
the d levels will have a symmetry type identical to some
low conductlion band, and only these d levels will hybrid-
ize. The remaining levels at this point can be used to
determine linear relations among the parameters. In addi-
tion, along symmetry lines, the secular equation conven-
iently factorizes into many relations among few parameters.

There is one more criterion for selecting rela-
tions among the parameters. The polints and levels should
be chosen so that the resultant statlistical welght of each
parameter 1s approximately the same. This results in

equal errors in the parameters. Equalilty in statistical
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welght can be guaranteed 1f the points used are equally
spaced along each symmetry line.

The evaluatlion of the parameters for copper was:
a simple matter since the energy bands had been calculated
by Burdick at 89 points in the Brillouin zone and 2/3 of
these points were along symmetry lines. Thus, approximately
150 useful levels remained after cémbining with 5 d~levels,
roughly half of which were unhybridized or non-degenerate
levels. Of these we selected 48, so that each parameter
was represented approximately five times. (Note that one
of the two zeros of energy must appear in each equation.)

These relations yleld the overdetermined 1linear equations

A,;j- X; =£, (a-1)

where /Q 1s the rectangular coefficient matrix, E, are
the energy eigenvalues, and Xj are the parameters. (We
sum on repeated indices.)

The R¢M-S deviation of the X, wlll be minimized

J
if

ALKALjXJ' =Au E; e
Calling ALkALj:ij. and ALI(EL :DA ’

then C: 1s a symmetrical, non-singular, square matrix.
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The desired parameters are given by

Xj =(C )kj DA . (A-3)
We can solve (A-3) using standard routines from a computer
library such as SHARE.

In Table Vv we list these parameters, as well
as the values calculated by Fletcher and Wolfarth. The
similarity in values 1is remarkable, considering the di-
vergent sources of the two columns.

By allowing a full three-centered treatment of
the d bands in copper, we have shown that an additional
restriction to two-centered overlap integrals makes a
negligible error in the band structure. Henceforth we
shall calculate the d bands in two-centered approximations

except for the zero-of-energy parameter %. Table VI lists

the d band matrix elements as derived from Slater-Koster6.



o7

APPENDIX B

The cholce of Bessel functions J2 (kR) to parameter-
ize the hybridizatlon and orthogonality form factors is
a natural one. The scale factor R represents an average
of the values of r for which the c-d potentlal interactions
or overlap (respectively) are largest. The best value of
R, which should not change greatly from one transition
metal to the next, are determlned as described below,

For larger values of k the replacement of a welghted
value of s (kn) over a range of r by a local value J, (kR)
will obviously be poor, because Jo (kr) oscillates in sign.
This effect is incorporated into the form factors by intro-
ducing a linear cutoff at large k. This cutoff plays a
small r8le in our calculations, because of the nearly
spherical shape of the fcc Brillouln zone. However, a
much greater effect 1s expected when the Brillouln zone
1s more anisotrople, as for bec crystals.

The "longest" radial symmetry dimension of the fcec
zone appears to be I'YKX. The lowest conduction band along
KX is 23, and when thls band is continued onto ¥ = T'K, it
becomes the second lowest conduction band., For this range
of k the cutoff effects are important. They can be separ-

ated by noting that the 22 and 23 d bands are symmetrical
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wilth respect to F25¢ in the absence of interactions with
the conductlon bands. This symmetry holds well for k
between I' and K/2 so that a linear cutoff was introduced
between K and3K/2.

With eleven parameters to be determined, it was neces-
sary to develop simple schemes to find best values. Our
scheme proceeded as follows. With the values of the d
band parameters determined as described in Appendix A,

A, B, R and R, were determined approximately by solving

1
2 x2 and 3 x 3 ¢c-d interaction secular equations along

Ay, Ay, T and Z. With these approximate values the rms
deviation of the fit was determined to be about 0.2 eV.

The parameters were varled by fixed increments and quad-
ratic interpolation was used to minimize the rms deviatlons.
This procedure converged rapidly (5 minutes on an IBM

7094) and uniquely to the values of the parameters quoted
in Table IIT. |
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TABLE CAPTIONS

Ratlo of the energy differences of two calculations -
of the valence bond structure of KCl (see reference 9).
Comparison of our derived two-center parameters with
those calculated by FW from Cu+ d wave functions. The
deviation of the various values from their mean is a
measure of the validity of the two-center approxima-
tion.

Values of model parameters chosen for two copper band
structures (ref. 19 and 20). The significance of
differences between the parameters is discussed in
section VI.

Interpolated values of the lowest seven levels at T,
X, L, and W as obtained from the parametric values
listed in Table III are compared with the calculated
values of Burdick (ref. 19) and Segall (ref. 20).

The fit is equally good in both cases. (All values

are listed in rydbergs.)

The values of the Slater-Koster overlap parameters

E, as obtained from fitting Burdick's band structure for

i
Cu are shown in column 4. These are to be compared
wlth the values listed in column 5 obtained from the

two-center formulae of column 3, The values of ddo,



Table VI,

3¢

ddr,and ddé were also obtalned by fitting Burdick's Cu
bands and are listed in Table III. The percentage
differences listed in the last column provide an 1ndi-
cation of the validity of the two-center approximation.
The matrix elements of the d-d block in the two-center
approximation. The symbol x represents kx a/2.and

similarly for y and z.
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TABLE I
(3x3) (8x8) Ratio of
Energy Secular Secular 23x3g differences to
levels equation equation 8x8) differences
(e¥) (o)
rls"‘ X5| 0056 0.27 2.07
Tyg- Xy 1.63 0.98 1.66
Xg0= Xy 1.07 0.52 2,05
L3,- ‘1"15 0.42 0.24 1.75
1"15- L2, 2.44 1.26 1.93
Ly~ Ly 2.87 1.51 1.90

Mean Ratio = 1.89



b

TABLE II
Value derived Value
Overlap from RMS calculated
parameter (3.2) - (3.4) Mean Deviation %. by FW
-00348 eV
ddr +0.163 eV +0.178 eV 8.4 % +0.182 eV
+0,192 eV
dds -0,0217 eV -0.0213eV 2.7 % -0,026 eV
-0.0217 eV
-0.0204 ev

-0.0217 ev
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TABLE IIT
Parameter Burdick Segall
d Bands do +5.8% ev +4.95 ev
ddO’ "'0035 eV -0045 eV
dadr +0.18 eV +0,24 eV
dds -0.02 eV -0,04 ev
Y +0,08 eV -0,01 eV
Conduction Vi11 +0.07 eV + 0,26 eV
Bands
V200 +0.46 ev +0.55 eV
Orthogonality A 1.29 1.59
L RO 2,88 3.03
Hybridization B 13.78 ev 13.92 eV

L Ry 2.93 3.47

Errors ./of 0,06 eV 0.08 eV



Level

F25,

Burdick point

~-1,043
-0.640
-0.582

-0.776
-0.739
~0.540
-0.527
-0.235
+0.152

-0.775
-0.642
-0.538
-0.429
-0.09%

-0.723
-0.671
-0.585
-0.527
+0.105

g

TABLE IV

Interpolation
fit

-1.043
-0.647
-0.574

-0.776
-0, 740
~-0.535
-0.534
-0.243
+0.145

-0. 774
-0,648
-0.543
-0.435
-0.099

-0.718
-0.676
-0.583
-0.536
+0.116

Int.
Segall fit
-0.836  -0.837
-0.505 -0.510
-0.433 -0.426
-0.666  -0,667
-0.630 -0.634
-0.383 -0.376
-0.366 -0,371
-0.024 -0.032
+0.389 +0.401
-0.646  -0.638
-0.511 -0.518
-0.380 -0.385
-0.247 -0.241
+0.,189  +0,201
-0.607  -0.599
-0.537 -0.536
-0.438  -0,438
-0.365 -(0.371.
+0.310 +0.313
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Flgure Captions
The Brillouin zone of the f.c.c. lattice showing the 1/48'th
primitive wedge used in the calculations.
Schematic representation of the hybridization and repulsive
effects tetween the Cu d bands and the lowest two conduction
bands al ng the symmetry line A. Only the bands of A sym-
metry are shown. The dashed lines show the unperturbed bands
of Al or the tight-binding d band of Cu in the absence of these
two effects. (The Al bands have been scaled so that(i;%i al =

(Q;%i)cu' at k = L.)

The energy levels of Cu. The solld circles represent the
calculated values of Burdick (reference 19) and the solid lines
represent the interpolated bands obtained using the parameters
listed in Table III. The small differences shown on the scale

of the solld circles are genulne and can be ascribed to break-
down of the ansatz of 4 isotropy.

The repulsive form factor f(k) exhibits a maximum for k near the
Brillouin zone edges. The value of f(k) shown here is taken from
the parameters used to fit Burdick's band structure (see Table III).
The hybridization form factor g(k). One can show that crystal
symmetry requires that g'(k) = O for k = L and X, where the

prime indicates the directlonal derivative of g(k) normal to

the L or X face (respectively). Our assumption of g isotrdpy then
suggests that i1f this is satisfied exactly g should be flat for
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k Dbetween L and X . We have chosen to 1gnore this condi-
tion, because as shown here g'(X) i1s very nearly zero, and
g'(L) is small. As a result g has a simple analytic form.

The linear cut-off discussed in Appendik B begins‘at hak/m =
9.3. 0

The density of d band states in Cu retalining the width due to the
tight-binding interactions ddoc, ddw, ddé but omitting the conduc-

tion bands as well as thelr interactions with the 4 bands.
Five major peaks appear in the density of states, at 0.27,
0.29, 0.33, 0.36 and 0.39 ryd.

The density of d band and conduction band states using the

Burdick d band parameters as in Flg. 6, but including inter-

~actions with the conduction bands. In the d band region the

densities of states are qualitatively simliar, but
numerous quantitative differences are apparent. Thus the peak
present in Fig. 6 at 0.27 ryd. has disappeared, while the 0.29
and 0.33 ryd. peaks of Fig. 6 have merged into one peak here
at 0.31 ryd. The peak at 0.22 ryd and the shoulder starting
near 0.15 ryd. arlse from those states near the bottom of the
d band which hybridlze strongly with the conduction band.

Here the conductlon band has been shifted relatlve to the d
band by-d.4 eV, The effects on the density of states are very
small, as can be seen by comparing with the density of states

shown in Fig. 7. For many purposes this provides Justificatlon
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of the rigid band model often used to discuss the properties

of transition metal alloys.
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